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Abstract

Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity pro-

portional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric sur-

faces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear

system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement

approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite

time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time

and space adaptivity to increase accuracy while reducing complexity.
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1. Surface diffusion and its formulation

The overall goal of this project is to devise efficient numerical tools for simulating morphological

changes in stressed epitaxial films and thereby study their complicated nonlinear dynamics. To model

the misfit between the crystalline structure of the substrate and epitaxial film, the film may be thought
of as subjected to mechanical stresses. This causes a plastic deformation of the free surface of the film. This

morphological instability of the free surface may eventually lead to crack formation and fracture, an issue

of paramount importance in Materials Science; see for instance [1,9,25] and the list of references in [6,7].

The dynamics of the free surface CðtÞ � Rd is governed by the highly nonlinear PDE
V ¼ �DSðjþ eÞ; ð1:1Þ

where d = 2,3,V and j are the (scalar) normal velocity and mean curvature of C, respectively, DS = divS$S

is the Laplace–Beltrami operator and e is the elastic energy density of the bulk X(t) enclosed by C(t). In this

paper, we consider the reduced purely geometricmodel for which e is a given forcing function. Our goal is to

present a novel variational formulation for parametric surfaces based on a semi-implicit time discretization,

which requires no explicit parametrization of the surface and yields a linear system of elliptic PDE to

approximate at each time step. We then develop a finite element method (FEM) and discuss mesh distortion

and adaptivity. This endeavor may be viewed as a building block towards solving the fully coupled system.

We recall now two fundamental properties of motion by surface diffusion. The first one is conservation of

volume for closed surfaces:
d

dt
jXðtÞj ¼

Z
CðtÞ

V ¼ �
Z
CðtÞ

DSðjþ eÞ ¼
Z
CðtÞ
rSðjþ eÞ � rS1 ¼ 0: ð1:2Þ
The second property is area decrease for e = 0 and suitable boundary conditions:
d

dt
jCðtÞj ¼ �

Z
CðtÞ

V j ¼ �
Z
CðtÞ
jrSjj2: ð1:3Þ
In fact motion by surface diffusion is formally the H�1 gradient flow for the area functional (see [9]). It is

desirable to preserve these essential properties under discretization, as the proposed FEM below does. This

method also handles two striking features which can occur for surface diffusion in finite time: a surface

which starts as a graph may cease to be so [17] (see Fig. 1), and a closed embedded hypersurface may

self-intersect [20] (see Fig. 2).

A number of issues arise, from existence, well posedness and regularity to algorithm design for simulat-

ing (1.1), perhaps enforcing (1.2) and (1.3). In [19], Escher et al. proved (local) existence, regularity, and

uniqueness of solutions provided � = 0 and the initial surface is sufficiently smooth. They also proved that
if the initial surface is embedded and close to a sphere, the solution exists globally and converges exponen-

tially fast to a sphere. We also refer to [18] for related results for curves in R2 as well as to [16] for Willmore

flow of curves in Rd . A fundamental mathematical obstruction to further progress arises from the fourth-

order nonlinear operator DSj, which rules out maximum principle techniques.

For axially symmetric surfaces a space–time finite element method is presented by Coleman et al. [11],

along with several stability properties and very interesting dynamics, some not predicted by linearized
Fig. 1. Evolution of a curve that ceases to be a graph in finite time.



Fig. 2. Evolution of an embedded curve which self-intersects in finite time.
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stability; we also refer to [5,26], which study stability of self-similar pinch-off. More recently, Deckelnick

et al. [13] provided an error analysis for the axially symmetric case. The graph case was considered by

Bänsch et al. [7] where an error analysis is derived for the space discretization, and this analysis was

extended by Deckelnick et al. [12] to a fully discrete method for anisotropic surface diffusion of graphs.

In this article, we present a novel finite element formulation for surface diffusion of more general sur-
faces, which requires no explicit parametrization. In contrast to finite difference approaches [10,21,24],

we exploit the underlying variational structure and derive an intrinsic formulation, which avoids writing

(1.1) in local coordinates.

Basic differential geometry reveals that the surface Laplacian of the position vector ~X on a surface C(t) is
the vector curvature~j, namely DS

~X ¼~j and~j is a vector normal to C(t) with magnitude equal to the sum of

the principal curvatures. This identity is the chief idea of [15] for designing a finite element method for mean

curvature flow of parametric surfaces. However, we also need to deal with the scalar curvature j in the pre-

sent context and cannot work directly with the curvature vector ~j. We propose instead to use four un-
knowns, namely scalar curvature j, curvature vector ~j, normal velocity ~V , and (scalar) normal velocity

V. Multiplication by the unit normal vector~m to C(t), pointing outward of the bulk enclosed by C(t), is fur-
ther used to convert from scalar to vector quantities and vice versa, thereby leading to the following four

equations:
~j ¼ DS
~X ; j ¼~j �~m; V ¼ �DSðjþ eÞ; ~V ¼ V~m: ð1:4Þ
This conversion, trivial when C(t) is smooth, cannot be enforced pointwise when C(t) is polyhedral be-
cause~m is discontinuous and so would be j according to (1.4). The relation between scalars and vectors will

later be imposed weakly (or in average), which turns out to be essential. To relate position ~X and velocity ~V ,
we resort to a semi-implicit time discretization: all the geometric quantities and the differential operator DS

are evaluated on the current surface Cn, whereas the unknowns ~j, j, V, and ~V are treated implicitly. If

sn: = tn+1�tn denotes the (variable) time-step from time tn to tn+1, then we could write
~X
nþ1 ¼ ~X

n þ sn~V
nþ1

: ð1:5Þ

Consequently, (1.4) becomes the following system of linear elliptic PDE on Cn:
~j nþ1 � snDS
~V

nþ1 ¼ DS
~X

n
;

j nþ1 �~j nþ1 �~m n ¼ 0;

V nþ1 þ DSj
nþ1 ¼ �DSe

n;

~V
nþ1 � V nþ1~m n ¼ 0:

ð1:6Þ
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We now list several properties of and issues pertinent to this system.

� Mixed method: the operator splitting of (1.6) can be viewed as a mixed formulation involving only sec-

ond- and zero-order operators.

� Parametrization: the formulation of (1.6) and thereby its space discretization does not require an expli-
cit parametrization of Cn; once ~V

nþ1
has been computed then (1.5) can be used to update the surface to

Cn+1.

� Avoiding C1 elements: since the operators involved are of either order 2 or 0, we can use C0 piecewise

polynomials of any degree to approximate (1.6); see Section 2. Therefore, we do not need C1 ele-

ments even to approximate curvature j. This simplifies the implementation without compromising

accuracy.

� Boundary conditions: in the present article, we consider either closed surfaces or natural boundary con-

ditions for which integration by parts yields no boundary terms. This restriction is for ease of presenta-
tion only, and helps highlight the novel variational formulation of the problem. But using the flexibility

of finite elements, other boundary conditions can be considered as well, with slight changes in the imple-

mentation. Different, physically relevant boundary conditions will be addressed in a forthcoming article,

where we will also tackle the coupling of surface diffusion with elasticity in the bulk.

� Conservation: testing the third equation in (1.6) with / = 1, and integrating by parts we realize that vol-

ume is preserved in the sense that
R
CnV nþ1 ¼ 0, which mimics (1.2) (observe that also

R
Cn~j

nþ1 ¼ 0.) Mul-

tiplying the same equation by / = jn+1 we prove a discrete analog of (1.3); see Theorem 2.1.

� Solvability: we show in Section 4 that the linear algebraic system ensuing from (1.6) is uniquely solvable
by examining a Schur complement approach for the single unknown V. This yields a symmetric and pos-

itive definite matrix, thus allowing for an efficient solution technique via preconditioned CG; see

Section 5.

� Mesh smoothing: the geometric flow by surface diffusion may lead to mesh distortions. We propose in

Section 5.2 a procedure to maintain shape regularity which is volume preserving. This procedure has

some independent interest.

� Time adaptivity: large timesteps may yield large changes of nodal positions with respect to neighboring

nodes, and thus contribute to mesh distortion. On the other hand, large timesteps may be desirable when
curvature changes slowly and the evolution is thus slow. We propose in Section 5.3 an effective timestep

control mechanism.

� Space adaptivity: accurate description of a surface with minimal number of degrees of freedom fits quite

naturally within the finite element framework. We propose in Section 5.4 a simple strategy to equidis-

tribute pointwise errors in an intrinsic metric.

� Topological changes: the formulation (1.6) cannot handle topological changes without an a priori clas-

sification of possible singularities, which is not yet available for surface diffusion. The proposed method

provides an efficient means for studying singularities as well as basic properties of the geometric flow, as
explored in Section 5. We refer to [10,14,24] for level set methods and to [8] for Cahn–Hilliard models

with degenerate mobility, which are in general capable of handling topological changes. Efficient com-

putation of surface diffusion is still under investigation for level set methods [10,14,24], and is much less

developed for diffuse interface models. Both approaches are rather stiff, which justifies searching for suit-

able semi-implicit time discretizations [10,14,24].

The rest of this paper is organized as follows. We present a finite element discretization of (1.6) in Section

2, together with discrete versions of (1.2) and (1.3). We discuss the ensuing linear algebraic problem in Sec-
tion 3 along with a Schur complement approach to its solution in Section 4. We document the performance

of our FEM in Section 5 via several simulations, some exhibiting pinch-off, self-intersections, and mush-

room formation in finite time. We discuss along key numerical issues such as mesh regularization to avoid
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mesh distortion, and time and space adaptivity to increase accuracy while reducing complexity. We finally

draw conclusions in Section 6.
2. Finite element discretization and stability

We now discuss the finite element discretization of (1.6) along with a couple of properties. To simplify

the notation we hereafter drop the scripts n and n + 1.

Let T be a regular but possibly graded mesh of triangular finite elements over the surface C which, from

now on, is assumed to be polyhedral. Let T 2T be a typical triangle and let~mT ¼ ðmiT Þ
d
i¼1 be the unit normal

to T pointing outwards. We denote by ~m the outward unit normal to C, which satisfies ~mjT ¼~mT for all

T 2T, and is thus discontinuous across interelement boundaries. Let f/ig
I
i¼1 be the set of canonical basis

functions of the finite element space VðCÞ of continuous piecewise polynomials Pk of degree 6k over
Tðk P 1Þ; we thus have a conforming approximation of VðCÞ . We note that VðCÞ � H 1ðCÞ and also

set ~VðCÞ :¼VðCÞd .
To derive a weak formulation, we multiply Eqs. (1.6) by test functions / 2VðCÞ and ~u 2 ~VðCÞ and use

integration by parts for the second-order operator DS. Denoting by ÆÆ,Ææ the L2-inner product over C, we
arrive at the fully discrete problem: seek ~V ;~j 2 ~VðCÞ; V ; j 2VðCÞ , such that
~j;~uh i þ s rS
~V ;r~u

� �
¼ � rS

~X ;rS~u
� �

8~u 2 ~VðCÞ; ð2:1Þ

j;/h i � ~j �~m;/h i ¼ 0 8/ 2VðCÞ; ð2:2Þ

V ;/h i � rSj;rS/h i ¼ rSe;rS/h i 8/ 2VðCÞ; ð2:3Þ

~V ; ~u
� �

� V ;~u �~mh i ¼ 0 8~u 2 ~VðCÞ: ð2:4Þ
We first note that the relations (2.2) and (2.4) between scalars and vectors are imposed weakly and
not pointwise; this allows for the four unknowns to be continuous whereas ~m is discontinuous. This is a

distinctive aspect of our approach. Secondly, we see that taking / = 1 in (2.3) yields volume

conservation:
Z
Cn
V nþ1 ¼ 0 80 6 n 6 N � 1: ð2:5Þ
Since the integral is computed over Cn, and not Cn+1, the volume changes slightly due to truncation error.

The change relative to the initial volume never exceeds 1.3% in our simulations, some rather singular (see

Fig. 13). We thirdly establish a result concerning the unconditional stability of the scheme, which mimics

the area decrease expression (1.3) for e = 0.

Theorem 2.1. (Unconditional stability) Let ðV n; jn; ~V
n
;~jnÞNn¼1 be the solution of either the semi-discrete

equation (1.6) or of the fully discrete Eqs. (2.1)–(2.4) and let Cn be the corresponding embedded surfaces. Then

for all 1 6 m 6 N, we have:
jCmj þ 1

2

Xm�1
n¼0

sn

Z
Cn
jrSj

nþ1j2 6 jC0j þ 1

2

Xm�1
n¼0

sn

Z
Cn
jrSeðtnÞj2: ð2:6Þ
Proof. We start by testing (2.3) with / = jn+1, thereby obtaining
V nþ1; jnþ1� �
¼ rSj

nþ1;rSj
nþ1� �
þ rSeðtnÞ;rSj

nþ1� �
:
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Combining (2.4) with ~u ¼~jnþ1 and (2.2) with / = Vn+1, we easily arrive at
~V
nþ1

;~jnþ1
D E

¼ V nþ1;~jnþ1 �~mn
� �

¼ jnþ1; V nþ1� �
;

whence
~V
nþ1

;~j nþ1
D E

¼ rSj
nþ1;rSj

nþ1� �
þ rSeðtnÞ;rSj

nþ1� �
: ð2:7Þ
On the other hand, testing (2.1) with ~u ¼ sn~V
nþ1

and observing that, according to (1.5),

sn~V
nþ1 ¼ ~X

nþ1 � ~X
n
we obtain
sn ~V
nþ1

;~j nþ1
D E

þ rS
~X

nþ1
;rSð~X

nþ1 � ~X
nÞ

D E
¼ 0: ð2:8Þ
Multiplying (2.7) by sn and substituting into (2.8) we infer that
rS
~X

nþ1
;rSð~X

nþ1 � ~X
nÞ

D E
þ sn rSj

nþ1;rSj
nþ1� �
¼ �sn rSeðtnÞ;rSj

nþ1� �
:

Applying Lemma 2.2, we can further estimate
jCnþ1j � jCnj þ sn

Z
Cn
jrSj

nþ1j2 6 sn

Z
Cn
jrSeðtnÞj2:
Summing up over n, from 0 to m � 1, yields the asserted result.

We stress that Theorem 2.1 is valid only as long as the assumption that fCngNn¼1 are embedded surfaces

holds. We will show simulations in Section 5 with formation of ears and node-crossing, which do not verify

this assumption (see Figs. 4 and 5). We will tackle this issue in Section 5.2. h

Lemma 2.2. (Area inequality [2]) Let d = 2,3 and C be a d � 1-dimensional, closed, regular C0,1-manifold

embedded in Rk; k 2 N. Moreover, let ~Y : C! rgðCÞ � Rk be a homeomorphism with D~Y ; ðD~Y Þ�1 2 L1.
Then, if ~X denotes the position vector of the integration variable, the following inequality holds:
Z

C
rS

~Y � rSð~Y � ~X ÞP j~Y ðCÞj � jCj:
The proof of the above lemma is rather technical and can be found in [2].
3. Matrix formulation

We now turn our attention to an equivalent matrix formulation to the fully discrete problem (2.1)–(2.4).

Given the matrix entries
Mij :¼ /i;/j

� �
; ~Mij :¼ Mij

~Id; ~Nij :¼ /i;/jm
k

� �d
k¼1; ð3:1Þ

Aij :¼ rS/i;rS/j

� �
; ~Aij :¼ Aij

~Id; ð3:2Þ
with ~Id 2 Rd�d being the identitymatrix and ð~ekÞdk¼1 the canonical basis ofRd , themass and stiffnessmatrices are
M :¼ ðMijÞIi:j¼1; ~M :¼ ð~MijÞIi:j¼1; ~N :¼ ð~NijÞIi:j¼1; ð3:3Þ

A :¼ ðAijÞIi:j¼1; ~A :¼ ð~AijÞIi:j¼1: ð3:4Þ
We point out that ~M ; ~A and ~N possess matrix-valued entries and therefore the matrix–vector product is

understood in the following sense:
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~M~V ¼
XI
j¼1

~Mij
~V j

 !I

i¼1

;

each component ~V i of ~V , as well as each of ~M~V , is itself a vector in Rd .

We use the convention that a vector of nodal values of a finite element function is written in bold face:

V ¼ ðV iÞIi¼1 2 V :¼ RI is equivalent to V ¼
PI

i¼1V i/i 2VðCÞ. We introduce the subspace XðCÞ ofVðCÞ of
functions with mean value zero, and the corresponding subspace X of V of vectors V satisfying V Æ M1 = 0

with 1 :¼ ð1ÞIi¼1. We then note that
V ¼
XI
i¼1

V i/i 2 XðCÞ () V ¼ ðV iÞIi¼1 2 X: ð3:5Þ
We are now in a position to write the matrix formulation of (2.1)–(2.4). Upon expanding the unknown

scalar functions V 2 XðCÞ;j 2VðCÞ and vector functions ~V 2 ~VðCÞ;~j 2 ~XðCÞ in terms of the basis func-

tions and setting / = /i and ~u ¼ /~ek, we easily arrive at
ð2:1Þ , s~A~V þ ~M~K ¼ �~A~X ; ð3:6Þ

ð2:2Þ , MK � ~N
T~K ¼ 0; ð3:7Þ

ð2:3Þ , � AK þMV ¼ E; ð3:8Þ

ð2:4Þ , ~M~V � ~NV ¼~0; ð3:9Þ

where E ¼ ðhrS/i;rSeiÞIi¼1. This system can be written equivalently in block-matrix form as follows: find
~V 2 ~V; K 2 V; ~K 2 ~X; V 2 X such that
s~A 0 ~M 0

0 �A 0 M
~M 0 0 �~N
0 M �~NT

0

2
6664

3
7775

~V

K

~K

V

2
6664

3
7775 ¼

�~A~X
E
~0

0

2
6664

3
7775: ð3:10Þ
We discuss the solvability of (3.10) and propose an algorithm for its solution in Section 4. We point out that

the mesh T can be suitably graded and the polynomial degree kP 1 is arbitrary, even though we restrict

ourselves to piecewise linears in the simulations of Section 5. This flexibility is quite important to handle
complicated geometries and possible pinch-off singularities. We also stress that ~A; ~M need not be formed

and stored in practice since they can be easily obtained from A, M.
4. Schur complement approach

Consider the following generic vector equation with a (possibly singular) square block A:
A B

C D

� �
U

Q

� �
¼

F

G

� �
:

Let A be symmetric with (nontrivial) kernel ker(A). Then the range Y of A is the orthogonal complement of

ker(A). Let S : Y! Y be the inverse of A restricted to Y: SA = AS = Id on Y. If P denotes the orthogonal

projection onto ker(A), we have
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SAV ¼ V � PV ¼ ðId � P ÞV 8V 2 RI ¼ V; ð4:1Þ

where Id � P is the orthogonal projection onto Y. The Schur complement equation for Q then reads
ð�CSBþ DÞQ þ CPU ¼ G � CSF: ð4:2Þ

Solvability of this system depends on the structure of the two terms on the left-hand side of (4.2). We intend

to apply this splitting to (3.10), which involves dealing with the upper left block containing ~A and A on the

diagonal.

Since the kernel Z of A in (3.4) is the one-dimensional subspace of V ¼ RI spanned by 1 ¼ ð1ÞIi¼1, then
the range Y ¼ Z? of A is the orthogonal complement of Z with respect to the standard Euclidean inner
product in RI . If X denotes the space defined in (3.5), X and Y are related as follows:
V 2 X () MV 2 Y: ð4:3Þ

Let S : Y! Y be the inverse of A restricted toY, and let P : V! Z be the orthogonal projection into Z,

thereby satisfying (4.1) with
PV ¼ 1

1T1
1TV1 ¼ 1� 1

I
V 8V 2 V: ð4:4Þ
We now would like to apply (4.2) to (3.10) with vectors U ¼ ½~V ;K �T and Q ¼ ½~K ;V�T. Let us assume

momentarily that there exists a solution ½~V ;K ; ~K ;V �T to (3.10). Then from (4.2) ~V , K ; ~K , V satisfy
1
s
~M~S~M ~N

~N
T �MSM

" #
~K

V

" #
¼ � 1

s
~M~S~A~X þ ~M~P~V

MPK �MSE

" #
: ð4:5Þ
We observe that both ~S~A~X and SE make sense because ~A~X 2 ~Y and E ¼ ðhrS/i;rSeiÞIi¼1 2 Y; this

could be viewed as a compatibility condition. Multiplying (3.6) and (3.8) by ~1 and 1, respectively, we see

that both components of Q satisfy ~K 2 ~X and V 2 X or, in view of (4.3),
~M~K 2 ~Y; MV 2 Y: ð4:6Þ

Since the upper left block of (4.5), ~M~S~M : ~X! ~M~Y, is nonsingular with inverse ~M

�1~A~M
�1
, we can apply

(4.2) again to arrive at
s~N
T~M

�1~A~M
�1~N þMSM

� �
V þMPK ¼ �~NT~M

�1~A~X þMSE: ð4:7Þ
To decouple (4.7) we first eliminate the termMPK which acts like a Lagrange multiplier to the constraint

V 2 X. We achieve this by the orthogonal projection P onto X:
P ¼ Id �M1�M1

M1T �M1
: ð4:8Þ
Since MPK 2 spanfM1g ¼ X?, upon multiplying (4.7) by P we obtain the final form of the Schur com-

plement, namely the reduced equation
P s~N
T~M

�1~A~M
�1~N þMSM

� �
PV ¼ P �~NT~M

�1~A~X þMSE
� �

; ð4:9Þ
because PV = V. This reasoning leads to the following solvability result.

Theorem 4.1. (Solvability) There exists a unique solution ½~V ;K ; ~K ;V�T of system (3.10), the components of

which can be obtained by sequentially solving the following (uniquely solvable) systems:
V 2 X : P s~N
T~M

�1~A~M
�1~N þMSM

� �
PV ¼ PF; ð4:10Þ
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~V 2 V : ~M~V ¼ ~NV ; ð4:11Þ

~K 2 V : ~M~K ¼ �~A~X � s~A~V ; ð4:12Þ

K 2 V : MK ¼ ~N
T~K ; ð4:13Þ
where F ¼ �~NT~M
�1~A~X þMSE.

Proof. By the argument preceding the statement of the theorem we conclude that if ½~V ;K ; ~K ;V �T is a solu-
tion to (3.10) then ~V , K, ~K , V are solutions to (4.10)–(4.13), respectively.

The reciprocal part of the proof consists of proving that systems (4.10)–(4.13) have unique solutions and

they constitute a solution of (3.10).

Let us first check the solvability of systems (4.10)–(4.13). It is easy to verify that the operator

PMSMP : X! X is symmetric and positive definite, and P~N
T~M

�1~A~M
�1~NP : X! X is symmetric and

positive semi-definite. Therefore, the matrix ensuing from (4.10) is positive definite and since the right-hand
side of the equation belongs to X, this symmetric system has a unique solution V 2 X. Systems (4.11)–

(4.13) involve mass matrices, which are positive definite in V ¼ RI , existence and uniqueness are thus

ensured.

Let us now verify that the solutions to (4.10)–(4.13) constitute a solution to (3.10). Since PV = V, by

(4.10) and (4.11) we have that
sP~N
T~M

�1~A~V þPMSMV ¼ P �~NT~M
�1~A~X þMSE

� �
;

or
PMSMV ¼ P �~NT~M
�1 ~A~X þ s~A~V
� �

þMSE
� �

:

Hence (4.12) implies PMSMV ¼ Pð~NT~K þMSEÞ, and (4.13) yields
PMSMV ¼ PMðK þ SEÞ:

Since P is the projection onto X, MSMV �MðK þ SEÞ 2 X? ¼ spanfM1g, we infer that
M�1ðMSMV �MðK þ SEÞÞ ¼ SMV � ðK þ SEÞ 2 Y? ¼ spanf1g:
Therefore, since Y? ¼ kerðAÞ,

A SMV � ðK þ SEÞð Þ ¼ MV � AK � E ¼ 0;
which coincides with the second equation in (3.10). The rest of the equations in (3.10) are immediately de-

duced from (4.11)–(4.13). h

The method actually implemented in ALBERT consists of first solving for V using (4.10), next solving

(4.11) for ~V and finally updating ~X via ~X þ s~V .
5. Implementation and simulations

In this section we describe the implementation of (2.1)–(2.4) together with several enhancements. The
latter are mesh regularization, space–time adaptivity and control of element angles. They are motivated

through examples showing the necessity of tackling such issues, and the beneficial effect of our approach
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to solving them. Throughout this section, we take e ” 0 in the simulations, because for the time being we are

mainly interested in the effect of plain surface diffusion. Computations with given e, as well as the coupling
with elasticity in the bulk X, will be the subject of future work.

5.1. Implementation

The implementation was performed within the finite element toolbox ALBERT [22,23], after adding suit-

able data structures to handle surfaces in R3 and curves in R2. The basic algorithm consists of the following

steps:

Algorithm 5.1. (Basic algorithm)

1. Take a mesh representing the initial surface

2. Choose a timestep s
3. Build the matrices A,M and ~N (~A, and ~M are not really necessary)

4. Solve (4.10) and (4.11)

5. Update ~X  ~X þs~V.
6. Go to step 3.

Notice that the matrices need to be re-built in each timestep because they depend on the current surface.

In step 4 we solve the following linear systems:
Fig. 3.

timest
V 2 X : P s~N
T~M

�1~A~M
�1~N þMSM

� �
PV ¼ �P~N

T~M
�1~A~X ;

~V 2 RI : ~M~V ¼ ~NV :
We solve both of them by a conjugate gradient (CG)method. Solving the second one is trivial since we only
have to invert a mass matrix which has bounded condition number. To solve the first one, in each iteration of

CG we have to compute a matrix–vector product for the matrix ensuing from this system, namely

Pðs~NT~M
�1~A~M

�1~N þMSMÞP, where the matrix S is the inverse of A restricted to ker(A)^. We do not com-

pute this inverse explicitly, but we solve a system of the form An = b using another CG iteration (inner loop).

Since A is a discretization of a Laplace operator, we use a hierarchical basis preconditioner which greatly im-

proves the performance of the inner loop. The design and study of effective preconditioners for the full system

is still open and we leave it for a forthcoming article. This issue is crucial to speed up the computations.

As a first example we show in Fig. 3 the evolution of a unit cube toward a ball with the same volume. As
can be seen in Fig. 3 the geometric flow by surface diffusion is not as gentle as the corresponding mean cur-

vature flow [15], and leads to severe mesh distortions. Even if our formulation of Section 2 allows corners

and edges, which are rather singular for surface diffusion, they give rise to fast node motion and mesh dis-

tortion. This is illustrated by the creation of ears during the evolution of the same cube when represented
t = 0 t = 2 × 10 4 t = 4 × 10 4 t = 8 × 10 4 t = 16 × 10 4

Evolution of a unit cube by surface diffusion. All the surfaces are represented by 768 triangles and 386 vertices. The (uniform)

ep used in the computations is s = 1 · 10�4.



t = 0 t = 2 × 10 4 t = 4 × 10 4 t = 8 × 10 4 t = 16 × 10 4

Fig. 4. Pathological ear formation in the evolution of a unit cube by surface diffusion. All the surfaces are represented by 3072 triangles

and 1538 vertices. Ear formation is the fatal manifestation of mesh distortion and is caused by clustering of nodes, crossing of element

sides and folding, and is due to an inadequate tangential motion. It is cured with mesh regularization and timestep control. The

(uniform) timestep s = 1 · 10�4 used in the computations is too large for the underlying mesh.

t = 0 t = 1 × 10 4 t = 2 × 10 4 t = 3 × 10 4 t = 4 × 10 4

Fig. 5. Steps toward the pathological formation of ears. Zoom into a vertex of the initial cube. After six timesteps some triangles

collapse into points and others into segments, thereby making the mesh degenerate and producing numerical artifacts. The surfaces are

represented by 3072 triangles and 1538 vertices. The (uniform) timestep s = 1 · 10�4 used in the computations is too large for the

underlying mesh resolution.
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with a finer mesh; see Figs. 4 and 5. This is clearly a numerical artifact and cannot be cured by mesh refine-

ment and/or coarsening.

There are two reasons that contribute to mesh distortion: clustering of nodes in regions of high velocity

(along with crossing of elements sides and folding) and large timesteps. The first issue is due to the absence,

in our formulation of Section 2, of a geometric law for tangential flow to maintain mesh quality; the cure is

thus mesh regularization and is discussed in Section 5.2. On the other hand, large timesteps yield changes of

nodal positions tangential to the surface which may exceed the local meshsize and also lead to mesh distor-

tion; a cure is timestep control and is discussed in Section 5.3.

5.2. Mesh regularization

Mesh regularization is a procedure to maintain mesh quality, namely to keep all angles on element stars

approximately of the same size; a star xz is the support of a basis function corresponding to node z. It is

known that good approximability of the surface and the PDE on it hinges on avoiding mesh distortion.

Mesh regularization is thus a redistribution of nodes on the surface, which entails a tangential flow and

does not affect the normal motion.
Since surface diffusion is a geometric evolution that preserves the volume of the bulkX(t) enclosed by C(t),

we present a volume preservingmesh regularization algorithm which consists of a Gauss-Seidel type iteration:

Algorithm 5.2. (Regularization sweep) For each node z of the mesh do the following:

1. Compute a normal~mz to the node z.
2. Compute a weighted average ẑ of all the vertices that belong to the star centered

at z.
3. Consider the line that passes through ẑ in the direction of the normal~mz.Replace

the node z by the only point belonging to this line that keeps unchanged the vol-

ume of the bulk.



Fig. 6. Volume preserving mesh regularization in 2d. The area of the shaded triangle coincides with that of the triangle marked with

thick lines. Then the area of the whole bulk remains unchanged.
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We now describe each step of this procedure in detail. In the first step, we take the normal to the node to
be the weighted average of the normals of the elements sharing that node. The weight is given by the size |T|

of the element over the size of the star. That is, for each node z, the normal~mz is defined by
~mz ¼
1P

T2Tz

jT j
X
T2Tz

~mT jT j;
where Tz denotes the set of all the elements of the mesh that contain z, and thus form the star xz, and~mT is
the outer normal of the element T.

In the second step, we take ẑ to be the average of the barycenters of all the elements in the star xz:
ẑ ¼ 1

#ðTzÞ
X
T2Tz

Pd
i¼1z

i
T

d
;

where ziT denotes the ith node of the element T. The result thus coincides with a weighted average of all the

nodes in xz.

The implementation of the third step depends on the dimension. In 2d the situation is simple. Given

that the bulk is the interior of a closed polygonal curve (mesh), consider a node z and its two adjacent

nodes as depicted in Fig. 6. The direction~mz turns out to be perpendicular to the segment joining the adja-

cent nodes. The idea is then to compute the new vertex ~z ¼ ẑþ t~mz, that will replace z, in such a way that

the area of the triangles with vertices z (triangle with thick lines) and ~z (shaded triangle) is the same (see
Fig. 6).

To perform the third step in 3d we first observe the fact that, given a fixed point �z, the volume of the

enclosed region is proportional to the sum of element contributions VT defined as follows:
VT ¼ ðz1T � �zÞ � ðz2T � �zÞ � ðz3T � �zÞ;
where ziT ; i ¼ 1; 2; 3 denotes the vertices of the (surface) element T following a positive orientation with re-

spect to the outer normal. The idea is now to compute the new vertex ~z ¼ ẑþ t~mz, that will replace z, in such

a way that the contribution to the volume of the modified star is the same as that of the original star. We

take �z :¼ ẑ in the definition of VT above, and number the vertices of each element in such a way that z ¼ z1T .
Then the volume contributions of the old and the new star will be equal if
X
T2Tz

ðz� ẑÞ � ðz2T � ẑÞ � ðz3T � ẑÞ ¼
X
T2Tz

ð~z� ẑÞ � ðz2T � ẑÞ � ðz3T � ẑÞ:



t = 0 t = 2 × 10 4

4

t = 8 × 10t = 1 6 × 1 04

Fig. 7. Evolution of a unit cube by surface diffusion usingmesh regularization . After each timestep, the mesh regularization sweep is

applied twice to the surface to curemesh distortions. All the surfaces are represented by 3072 triangles and 1538 vertices. The timestep

used in the computations is s = 1· 10 � 4 , as in Fig. 4.
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Since ~z� ẑ ¼ t~mz, this equation will hold for
t ¼
P

T2Tz
ðz� ẑÞ � ðz2T � ẑÞ � ðz3T � ẑÞP

T2Tz
~mz � ðz2T � ẑÞ � ðz3T � ẑÞ :
The beneficial effect of this mesh regularization is reflected in the simulation depicted in Fig. 7, which

displays the evolution of the unit cube represented initially by the same fine mesh of Fig. 4. No ear forma-

tion is now observed.

This simple minded mesh smoothing algorithm has some intrinsic merits which, in particular, make it
instrumental for mesh improvement and update even in dealing with the volume enclosed by Cn (the bulk).

5.3. Timestep control

The timestep control is twofold. First it is meant to prevent large timesteps for which the position change

of a node, tangential to the surface and relative to that of neighboring nodes, is larger than the element size.

This may be responsible for mesh distortion and even node crossing. The second objective is to allow large

timesteps when the normal velocity does not exhibit large variations, and to force small timesteps otherwise.
The very disparate time scales that can be observed in all the evolutions presented in this section, which are

typical of fourth-order problems, suggest that timestep control represents an important improvement in

accuracy while maintaining a moderate number of timesteps.

To determine a criterion for timestep control, we argue as follows. Let z0 be a generic node and let z be

an adjacent node, both belonging to an element T. In view of (1.5), their relative position change is

sð~V ðz0Þ � ~V ðzÞÞ. If~sT is any unit tangent vector to T, then the relative position change tangential to C is

given by
sjð~V ðz0Þ � ~V ðzÞÞ �~sT j 6 CshT jrS
~V T j;
with C > 0 a mesh independent constant. We would like this quantity not to exceed a fraction of the local

meshsize hT, which thereby leads to
sjrS
~V T j 6 �t 8T 2T:
This gives rise to the following algorithm, which uses input parameters �t, smin and smax > 0 (in all our simu-

lations �t = 10�1, smin = 10�7, smax = 5 · 10�3).

Algorithm 5.3. (Timestep control)

1. Compute the quantity q ¼ �t=max jrS
~V j

2. If s 6 q update ~X  ~X þ s~V
3. Otherwise neglect the computation and keep ~X as is.

4. In any case let the candidate for s be
 = 4 × 1 0



t = 0 .42t = 0 . 47378 × 10

t

= 0.

17272

Fig. 8.
obtaine
sweep

s

max =
334
s	 ¼
s if 0:9q 6 s 6 q

0:9q otherwise

�

5. Set s ¼
smin if s	 < smin

s	 if smin 6 s	 6 smax

smax if smax < s	:

8<
:

In Fig. 8, we show the combined effect of mesh regularization together with timestep control in the evo-

lution of a 4 · 1 · 1 prism. The pictures correspond to the solution obtained every nine adaptive timesteps.

It is apparent from the pictures that the timestep control not only prevented mesh distortion, but also al-

lowed for big timesteps where the evolution was slow, and forced small timesteps at the beginning, when the

surface was too rough and the timescale very fast. Since the pictures correspond to the solution obtained

every nine timesteps, we observe that the timestep control mechanism was able to capture the very disparate
timescales present due to the fourth order nature of this problem.

On the other hand, Fig. 8 reveals unnecessary clustering of nodes in smooth regions and lack of resolu-

tion in other regions. This is tackled by space adaptivity and is discussed next.

5.4. Space adaptivity

In this section, we present a method for refining/coarsening meshes that define a surface C, with the pur-

pose of having an accurate representation of C in the sense that the density of nodes should correlate with
the local variation (regularity) of C. We cannot rely on parametrizations to quantify regularity of C because

this concept would not be invariant under reparametrization. Therefore, we need an intrinsic measure of

regularity such as the second fundamental form rS~m and not just its trace, namely the mean curvature j
which is at our disposal.
t = 0

3496 × 10

t = 0 . 26722 × 103

t = 0 .26168 × 10t = 0 .10891 t = 0 .25706Evolution of a 4 · 1 · 1 prism toward a ball with equal volume using mesh regularization and timestep control . Solutions
d every nine adaptive timesteps. All the surfaces are represented by 2304 triangles and 1154 vertices. The mesh regularization
was run two times after each timestep, and the parameters of the timestep control routine were �

t

= 0.1, smin

=1 · 10� 7,
5 · 10

� 3

.
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We thus argue as follows. Let T 1; T 2 2T be two adjacent elements with unit normals~m1;~m2, which share

the side (node in 2d) S. We could compute rS~m as
= 0 .31914edom (vertices)forof
jrS~mj 

j~m1 �~m2j

hS

 aS

hS
;

where hS stands for the local meshsize at S and aS for the angle between~m1 and~m2. Since the pointwise accu-
racy of the mesh in representing C is proportional to h2S jrS~mj, we end up with the following test for mesh

quality
hSaS 6 �s;
where �s is a given parameter. If we add refinement and coarsening parameters cR,cC > 0, we end up with

the following algorithm.

Algorithm 5.4. (Mesh adaptation)

1. Compute all aS and let AT :¼
P

S�ThSaS 8T 2T.

2. Let Amax be the maximum AT.

3. If Amax > �s, mark for refinement all the elements T having AT > cRAmax.

4. Perform d � 1 bisections to every marked element.

5. Mark for coarsening all the elements T having AT < cCAmax.

6. Coarsen the marked elements.

7. If the mesh was modified go to step 1.

The effect of mesh adaptation is twofold: first, it helps us get a better resolution close to edges and angles,

and secondly, it reduces the computing time by decreasing the number of degrees of freedom in smooth

regions. In Fig. 9, we show the evolution of the 4 · 1 · 1 prism presented before using now this adaptation

routine; we took �s = 0.1, cC = 0.3, cR = 0.7. The initial mesh is that of Fig. 8 after applying Algorithm 5.4.

We used the same mesh regularization and timestep control as before. Additionally, after each timestep, we

ran the adaptation algorithm followed by two mesh regularizations. The saving in spatial degrees of free-
dom is apparent by comparing Fig. 9 with Fig. 8, for which 1154 vertices were employed throughout.
t = 0 (1250) t = 0 .09710 × 10 3 (1090) t = 0 .72838 × 10 3 (634)

t = 0 .02079 (1178) t = 0 .16740 (754)

(520)Fig. 9. Evolution of a 4·1·1 using timestep control, mesh regularization andmesh re“nement/coarsening. Between parentheses weused to represent the surface and should be compared with 1154 forFig. 8withoutthe mesh re“nement/coarsening routine were�s= 0.7,cC= 0.3,cR= 0.7.E. BaComputational Physics 203 (2005) 321…343335
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To further investigate the nonlinear dynamics of surface diffusion we compute the evolution of a longer

prism, and we verify numerically that surface diffusion can lead to pinch-off depending on the aspect ratio

of the initial surface, see Figs. 10–12. During the evolution toward this topology change of the surface,

some elements degenerate, especially those close to the pinch-off, producing in turn some loss of accuracy.

Since it is known that wide angles are responsible for loss of accuracy, we introduce in Section 5.5 a pro-
cedure to control wide angles.

5.5. Angle width control

The routine for controlling the size of the widest angles is very simple, and it consists of a single splitting

of those elements with angles wider than a certain threshold amax, followed by nMR mesh regularization

sweeps.

. / J o u r n
t = 0 (2178)

= 0 . 39501 (1624)

t =0 . 6487×10 (1906)t = 0 .40762 (1528)

t = 0 .00129 (2170)

t = 0 . 12536 (1962)

t = 0 .41346 (1200)
(1632)

t = 0 .41349 (1004)
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t = 0 .399123
(1568)

t = 0 .411839
(1512)

t = 0 .413154
(1528)

t = 0 .413400
(1368)

t = 0 .413464
(1200)

Fig. 11. Detailed view of the pinch-off for the 8 · 1 · 1 prism. The control of wide angles, coupled with mesh regularization, refinement

and coarsening cure mesh distortion until the very moment of pinch-off, when the elements are rather elongated but not degenerate. An

angle is considered to be wide when bigger than 120�.
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Algorithm 5.5. (Angle width control)

1. Mark all the elements having at least one angle bigger than amax.
2. If there are elements marked,

(a) Halve (one bisection) all the marked elements.

(b) Perform nMR regularization sweeps.

(c) Go to 1.

3. If there are no elements marked, continue.

Here, amax, nMR are fixed parameters. The element halving is done following the newest-vertex bisection
rule, which keeps the number of elements in a star uniformly bounded, but may not necessarily split the

widest angle. The subsequent mesh regularization takes care of this issue. It is important to point out that

only one bisection is done to the elements at this stage: two bisections would lead to elements having the

same angles as the original! Fig. 11 shows a detailed view of the evolution of the 8 · 1 · 1 prism when

approaching the pinch-off. The control of wide angles, coupled with mesh regularization, refinement and

coarsening produce very good meshes, even very close to the pinch-off.
5.6. Full adaptive algorithm

We start this section by describing the final version of our adaptive algorithm for surface diffusion.

Algorithm 5.6. (Final version of surface diffusion)

1. Start with an initial mesh, and let ~X be the vector of coordinates.Let s be the

initial timestep.

2. Set the values for the following parameters:

Mesh regularization:nMR 2 Zþ (number of sweeps)

Timestep control:0 < smin < smax, �t > 0

Space adaptivity:�s > 0, 0 < cC < cR < 1 Control of angles width:60� < amax < 180�.
3. Perform nMR regularization sweeps (Algorithm 5.2).

4. Run the mesh adaptation routine (Algorithm 5.4).

5. If d = 3, run the routine for controlling wide angles (Algorithm 5.5).

6. Solve (4.10) for V and (4.11) for ~V.
7. Apply timestep control and update ~X (Algorithm 5.3).

8. Go to 3.



= 0 (4034)

t = 0. 000248 (3434)

t = 0 .098140 (4074)

t = 0 .444604 (3608)

t = 0.668743 (2486)Fig. 12. Evolution of a 16· 1 · 1 prism toward two simultaneous cusps revealing that the number of singularities depends on the

aspect ratio of the initial prism. All the parameters used for this simulation are the same as those for the 8· 1 · 1 prism.
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In order to obtain quantitative information of our algorithm we compared the behavior using the full
adaptive algorithm in four test cases: a cube, a 4 · 1 · 1 prism, an 8 · 1 · 1 prism, and a 16 · 1 · 1 prism.

In all of the experiments we used the same parameters:
t = 0 .634604 (3556)t= 0 .663204 (3156)
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� Mesh regularization: nMR = 2 (number of sweeps).

� Timestep control: �t = 0.1 (tolerance), smin = 1 · 10�7 (minimum timestep), smax = 5 · 10�3 (maximum

timestep).

� Space adaptivity: �s = 0.1 (tolerance), cR = 0.7 (refinement threshold), cC = 0.3 (coarsening threshold).

� Control of angles width: amax = 120� (widest angle allowed).

Fig. 13 shows volume and surface area vs. time. Volume change is minimal (less than 1.3%), and thus

consistent with (2.5). Surface areas are always decreasing with t as predicted by (2.6).

Fig. 14 provides information about the behavior of the timesteps due to the timestep control routine:

it shows histograms with the number of timesteps used in every tenth of the whole time interval. In all

the experiments, and due to the sharp sides of the initial prisms, which imply a fast motion of points,
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Fig. 13. Relative volume and surface area with respect to the initial values vs. normalized time (t/Tfinal). The computations were

performed with the full adaptive algorithm (Algorithm 5.6).

Fig. 14. Timestep control: Number of timesteps used in each tenth of the whole time interval of computation. In all the experiments,

and due to the sharp sides of the initial prisms, the timestep size was smin at the beginning. For the cases where singularities occur

(8 · 1 · 1 and 16 · 1 · 1 prism) the timesteps are again very small at the end due to the infinite velocity of the points of the surface close

to the pinch-off.



1211×10

2=tt
the timestep size was smin at the beginning. This situation changes due to the smoothing effect of sur-

face diffusion. For the cases where singularities occur (8 · 1 · 1 and 16 · 1 · 1 prism) the timesteps are

again very small at the end due to the infinite velocity of those points of the surface which are close to

the pinch-off.

To end this section we present in Fig. 15 the evolution of the corner of a cube using natural boundary
conditions. Here, we can observe in detail the evolution of sharp edges that, being rather singular for sur-

face diffusion are handled transparently by our method.
5.7. Simulations of curves in R 2

We finally illustrate the behavior of curves in R2.

Fig. 16 shows the evolution of a 2 · 2-square from which a very thin rectangle (0.02 · 1.8) is missing; we

call it an almost slit domain. We observe here a pinch-off, followed by a curve crossing, which in contrast to
3d does not create a problem because both parts of the curve are evolving separately and do not see each

other. The figure finally evolves to a circle, the stable asymptotic configuration in 2d.

In Fig. 17, we show the evolution of a four-leafed rose, which was computed previously by Escher et al.

[19] using a finite difference scheme. We plot the solutions obtained with our full adaptive algorithm for

our values of t closest to those shown in [19]. The qualitative agreement of both computations is

excellent.
t = 0 t = 0 .113 × 10 5 t = 0 .932 × 10 5

t = 0 .4300 × 10 4 =0 .35039 × 10 3= 0 .3
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t = 0 t = 0 .685 × 10 5 t = 0 .235 × 10 4 t = 0 .580 × 10 4

t = 0 .120 × 10 3 t = 0 .232 × 10 3 t = 0 .406 × 10 3 t = 0 .710 × 10 3

t = 0 .112 × 10 2 t = 0 .143 × 10 2 t = 0 .165 × 10 2 t = 0 .197 × 10 2

Fig. 16. Bubble formation during the evolution of a curve by surface diffusion. Solution obtained every 60 adaptive timestesps. The

curve defines initially an almost slit domain, next develops a mushroom shape before self-intersecting and crossing, and finally opens

up. It is important to observe the very disparate time scales of this evolution. This purely geometric motion might be a mechanism for

the creation of inclusions (or islands).

t = 0 t = 0 .01965 t = 0 .05017 t = 0 .07517

Fig. 17. Evolution of the rose given in polar coordinates by r(h) = sin(2h). The stable asymptotic limit is a circle on which the curve

winds three times. The qualitative agreement with the results presented in [19] is excellent.
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6. Conclusions

We have devised and implemented a new FEM for the purely geometric motion of parametric surfaces

(or curves) by surface diffusion. The scheme hinges on

� an operator splitting into second- and zero-order equations;

� dealing with both continuous scalar and vector velocities and curvatures, which relate weakly with the

discontinuous unit normals;
� a semi-implicit time discretization, which leads to linear PDE to be solved at each time step, allows for

relatively large time steps, and requires no explicit parametrization of the surface;

� an effective Schur complement approach for the solution of the ensuing linear systems;

� mesh smoothing to avoid mesh distortions, as well as space adaptivity and timestep control to optimize

the computational effort.



342 E. Bänsch et al. / Journal of Computational Physics 203 (2005) 321–343
We documented the performance of the new FEM with an extensive list of simulations, some exhibiting

pinch-off, crossing, and mushroom formation in finite time. The algorithm is well suited for the study of

surface diffusion as well as the coupling of it with other physical processes such as elasticity. In the present
paper, we restricted ourselves to considering closed surfaces or natural boundary conditions. The flexibility

of finite elements, however, allows for other boundary conditions via slight changes in the implementation.

Animations of the computational results presented above can be found in http://www.math.umd.edu/~rhn/

SurfDiff/Movies.

We mention [3,4] which uses the 2d version of our scheme for island dynamics with adatom diffusion and

adsorption–desorption, where the dynamics of the island boundaries is governed by a two-sided flux to-

gether with surface diffusion.
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