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Abstract

Surface diffusion is a (fourth order highly nonlinear) geometric driven motion of a surface with normal velocity pro-
portional to the surface Laplacian of mean curvature. We present a novel variational formulation for parametric sur-
faces with or without boundaries. The method is semi-implicit, requires no explicit parametrization, and yields a linear
system of elliptic PDE to solve at each time step. We next develop a finite element method, propose a Schur complement
approach to solve the resulting linear systems, and show several significant simulations, some with pinch-off in finite
time. We introduce a mesh regularization algorithm, which helps prevent mesh distortion, and discuss the use of time
and space adaptivity to increase accuracy while reducing complexity.
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1. Surface diffusion and its formulation

The overall goal of this project is to devise efficient numerical tools for simulating morphological
changes in stressed epitaxial films and thereby study their complicated nonlinear dynamics. To model
the misfit between the crystalline structure of the substrate and epitaxial film, the film may be thought
of as subjected to mechanical stresses. This causes a plastic deformation of the free surface of the film. This
morphological instability of the free surface may eventually lead to crack formation and fracture, an issue
of paramount importance in Materials Science; see for instance [1,9,25] and the list of references in [6,7].

The dynamics of the free surface I'(f) C R? is governed by the highly nonlinear PDE

V=—-As(k+¢), (1.1)

where d = 2,3,V and « are the (scalar) normal velocity and mean curvature of I, respectively, Ag = divgVg
is the Laplace-Beltrami operator and ¢ is the elastic energy density of the bulk Q(7) enclosed by I'(¢). In this
paper, we consider the reduced purely geometric model for which ¢ is a given forcing function. Our goal is to
present a novel variational formulation for parametric surfaces based on a semi-implicit time discretization,
which requires no explicit parametrization of the surface and yields a linear system of elliptic PDE to
approximate at each time step. We then develop a finite element method (FEM) and discuss mesh distortion
and adaptivity. This endeavor may be viewed as a building block towards solving the fully coupled system.

We recall now two fundamental properties of motion by surface diffusion. The first one is conservation of
volume for closed surfaces:

d
—|Q(t)|:/ V:—/ AS(K+8>=/ Vs(ic + ) - Vsl = 0. (12)
dt ra) ra) )

The second property is area decrease for ¢ = 0 and suitable boundary conditions:
d
— | ()| = —/ Vi = —/ V|, (1.3)
dt () e

In fact motion by surface diffusion is formally the H~! gradient flow for the area functional (see [9]). It is
desirable to preserve these essential properties under discretization, as the proposed FEM below does. This
method also handles two striking features which can occur for surface diffusion in finite time: a surface
which starts as a graph may cease to be so [17] (see Fig. 1), and a closed embedded hypersurface may
self-intersect [20] (see Fig. 2).

A number of issues arise, from existence, well posedness and regularity to algorithm design for simulat-
ing (1.1), perhaps enforcing (1.2) and (1.3). In [19], Escher et al. proved (local) existence, regularity, and
uniqueness of solutions provided € = 0 and the initial surface is sufficiently smooth. They also proved that
if the initial surface is embedded and close to a sphere, the solution exists globally and converges exponen-
tially fast to a sphere. We also refer to [18] for related results for curves in R? as well as to [16] for Willmore
flow of curves in R?. A fundamental mathematical obstruction to further progress arises from the fourth-
order nonlinear operator Agx, which rules out maximum principle techniques.

For axially symmetric surfaces a space-time finite element method is presented by Coleman et al. [11],
along with several stability properties and very interesting dynamics, some not predicted by linearized
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Fig. 1. Evolution of a curve that ceases to be a graph in finite time.
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Fig. 2. Evolution of an embedded curve which self-intersects in finite time.

stability; we also refer to [5,26], which study stability of self-similar pinch-off. More recently, Deckelnick
et al. [13] provided an error analysis for the axially symmetric case. The graph case was considered by
Binsch et al. [7] where an error analysis is derived for the space discretization, and this analysis was
extended by Deckelnick et al. [12] to a fully discrete method for anisotropic surface diffusion of graphs.

In this article, we present a novel finite element formulation for surface diffusion of more general sur-
faces, which requires no explicit parametrization. In contrast to finite difference approaches [10,21,24],
we exploit the underlying variational structure and derive an intrinsic formulation, which avoids writing
(1.1) in local coordinates.

Basic differential geometry reveals that the surface Laplacian of the position vector X on a surface I'(7) is
the vector curvature %, namely AsX = & and & is a vector normal to I'(¢) with magnitude equal to the sum of
the principal curvatures. This identity is the chief idea of [15] for designing a finite element method for mean
curvature flow of parametric surfaces. However, we also need to deal with the scalar curvature x in the pre-
sent context and cannot work directly with the curvature vector ¥. We propose instead to use four un-
knowns, namely scalar curvature k, curvature vector ¥, normal velocity V, and (scalar) normal velocity
V. Multiplication by the unit normal vector v to I'(¢), pointing outward of the bulk enclosed by I'(¢), is fur-
ther used to convert from scalar to vector quantities and vice versa, thereby leading to the following four
equations:

R=AX, k=R-V, V=—-Ask+e), V=V7V (1.4)

This conversion, trivial when I'(¢) is smooth, cannot be enforced pointwise when I'(¢) is polyhedral be-
cause V is discontinuous and so would be x according to (1.4). The relation between scalars and vectors will
later be imposed weakly (or in average), which turns out to be essential. To relate position X and velocity 7,
we resort to a semi-implicit time discretization: all the geometric quantities and the differential operator Ag
are evaluated on the current surface I'", whereas the unknowns &, x, V, and ¥ are treated implicitly. If
T,. = t,+1—t, denotes the (variable) time-step from time ¢, to 7,4+, then we could write

—n+1 —n —n+l

X" =X, 0. (1.5)
Consequently, (1.4) becomes the following system of linear elliptic PDE on I'":

S+l = n+l on
Kn+ —T,,AsV :AsX s

n+l _ =ntl ‘—)»n _ 07

K K

n+1 n+l __ n
V + AsK = —A58 s

— n+1

v —rrit=o.
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We now list several properties of and issues pertinent to this system.

e Mixed method: the operator splitting of (1.6) can be viewed as a mixed formulation involving only sec-
ond- and zero-order operators.

e Parametrization: the formulation of (1.6) and thereby its space discretization does not require an expli-
cit earametrization of I'"; once 7" has been computed then (1.5) can be used to update the surface to
rh

o Avoiding C' elements: since the operators involved are of either order 2 or 0, we can use C° piecewise
polynomials of any degree to approximate (1.6); see Section 2. Therefore, we do not need C' ele-
ments even to approximate curvature x. This simplifies the implementation without compromising
accuracy.

e Boundary conditions: in the present article, we consider either closed surfaces or natural boundary con-
ditions for which integration by parts yields no boundary terms. This restriction is for ease of presenta-
tion only, and helps highlight the novel variational formulation of the problem. But using the flexibility
of finite elements, other boundary conditions can be considered as well, with slight changes in the imple-
mentation. Different, physically relevant boundary conditions will be addressed in a forthcoming article,
where we will also tackle the coupling of surface diffusion with elasticity in the bulk.

e Conservation: testing the third equation in (1.6) with ¢ = 1, and integrating by parts we realize that vol-
ume is preserved in the sense that [, /"' = 0, which mimics (1.2) (observe that also [, &1 =0.) Mul-
tiplying the same equation by ¢ = k"' we prove a discrete analog of (1.3); see Theorem 2.1.

e Solvability: we show in Section 4 that the /inear algebraic system ensuing from (1.6) is uniquely solvable
by examining a Schur complement approach for the single unknown V. This yields a symmetric and pos-
itive definite matrix, thus allowing for an efficient solution technique via preconditioned CG; see
Section 5.

o Mesh smoothing: the geometric flow by surface diffusion may lead to mesh distortions. We propose in
Section 5.2 a procedure to maintain shape regularity which is volume preserving. This procedure has
some independent interest.

e Time adaptivity: large timesteps may yield large changes of nodal positions with respect to neighboring
nodes, and thus contribute to mesh distortion. On the other hand, large timesteps may be desirable when
curvature changes slowly and the evolution is thus slow. We propose in Section 5.3 an effective timestep
control mechanism.

e Space adaptivity: accurate description of a surface with minimal number of degrees of freedom fits quite
naturally within the finite element framework. We propose in Section 5.4 a simple strategy to equidis-
tribute pointwise errors in an intrinsic metric.

e Topological changes: the formulation (1.6) cannot handle topological changes without an a priori clas-
sification of possible singularities, which is not yet available for surface diffusion. The proposed method
provides an efficient means for studying singularities as well as basic properties of the geometric flow, as
explored in Section 5. We refer to [10,14,24] for level set methods and to [8] for Cahn-Hilliard models
with degenerate mobility, which are in general capable of handling topological changes. Efficient com-
putation of surface diffusion is still under investigation for level set methods [10,14,24], and is much less
developed for diffuse interface models. Both approaches are rather stiff, which justifies searching for suit-
able semi-implicit time discretizations [10,14,24].

The rest of this paper is organized as follows. We present a finite element discretization of (1.6) in Section
2, together with discrete versions of (1.2) and (1.3). We discuss the ensuing linear algebraic problem in Sec-
tion 3 along with a Schur complement approach to its solution in Section 4. We document the performance
of our FEM in Section 5 via several simulations, some exhibiting pinch-off, self-intersections, and mush-
room formation in finite time. We discuss along key numerical issues such as mesh regularization to avoid



E. Binsch et al. | Journal of Computational Physics 203 (2005) 321-343 325

mesh distortion, and time and space adaptivity to increase accuracy while reducing complexity. We finally
draw conclusions in Section 6.

2. Finite element discretization and stability

We now discuss the finite element discretization of (1.6) along with a couple of properties. To simplify
the notation we hereafter drop the scripts n and n + 1.

Let 7 be a regular but possibly graded mesh of triangular finite elements over the surface I' which, from
now on, is assumed to be polyhedral. Let T € 7 be a typical triangle and let v; = (vT)ji , be the unit normal
to T pointing outwards. We denote by v the outward unit normal to I', which satisfies V|, = ¥ for all
T € 7, and is thus discontinuous across interelement boundaries. Let {¢,}._, be the set of canonical basis
functions of the finite element space ¥ (I') of continuous piecewise polynomials 2* of degree <k over
T (k = 1); we thus have a conforming approximation of ¥"(I') . We note that ¥"(I') C H'(I') and also
set 7 (I') == v (I)".

To derive a weak formulation, we multiply Egs. (1.6) by test functions ¢ € #"(I') and @ € V(T ) and use
integration by parts for the second-order operator Ag. Denoting by () the L*-inner product over I', we
arrive at the fully discrete problem: seek ¥, & € ¥ (I'),V,k € ¥°(I') , such that

(%, @) + t(VsV,VB) = —(VsX,Vsp) V57 (I), (2.1)
(k) — (R-V,¢) =0 Ve € v (I, (2.2)
(V, ) = (Vsk, Vs) = (Vse, Vsd) Vo € 77(I), (2.3)
(V,¢)— (V. 3-9) =0 Yger(I). (2.4)

We first note that the relations (2.2) and (2.4) between scalars and vectors are imposed weakly and
not pointwise; this allows for the four unknowns to be continuous whereas v is discontinuous. This is a
distinctive aspect of our approach. Secondly, we see that taking ¢ =1 in (2.3) yields volume
conservation:

/V”“:O VO<n<N-—1 (2.5)
.

Since the integral is computed over I, and not I""*!, the volume changes slightly due to truncation error.
The change relative to the initial volume never exceeds 1.3% in our simulations, some rather singular (see
Fig. 13). We thirdly establish a result concerning the unconditional stability of the scheme, which mimics
the area decrease expression (1.3) for ¢ = 0.

Theorem 2.1. (Unconditional stability) Let (V" k" R ) | be the solution of either the semi-discrete
equation (1.6) or of the fully discrete Eqs. (2.1)—(2.4) and let rr be the corresponding embedded surfaces. Then
for all 1 < m < N, we have:

m—1

|FM|+ZZT,,/ Vs <|F0|+ZZ‘C”/ |Vse(t,)|" (2.6)

Proof. We start by testing (2.3) with ¢ = "', thereby obtaining

<Vn+17Kn+l> — <VSKn+1’vSKn+1> 4 <VS8(IH),VsKn+1>.
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Combining (2.4) with @ = #""" and (2.2) with ¢ = V"*!, we easily arrive at
Sntl -
<Vn ,K”+l> _ <Vn+1’ Kn+l . Vn> _ <Kn+1, Vn+1>,

whence

= n

<V +17}—én+1> _ <V5Kn+17vsk:n+l> + <ng(tn)7vskn+l>. (27)

991 the other hand, testing (2.1) with (ﬁ:rnV"H and observing that, according to (1.5),

on

T,V = — X" we obtain
fn<r7"*‘, ;z"*‘> + <v5)?”“, vs(X" —)?”)> —0. (2.8)
Multiplying (2.7) by 1, and substituting into (2.8) we infer that
(VX" V(X = X)) + 1 (Ver™!, Wk 1) = —5,(Vise(ty), Vs ).
Applying Lemma 2.2, we can further estimate

| — |r”|+f,,/ Vs < f,,/ |Vse(t,)].
r Al

Summing up over n, from 0 to m — 1, yields the asserted result.

We stress that Theorem 2.1 is valid only as long as the assumption that {I"" };V:I are embedded surfaces
holds. We will show simulations in Section 5 with formation of ears and node-crossing, which do not verify
this assumption (see Figs. 4 and 5). We will tackle this issue in Section 5.2. [

Lemma 2.2. (Area inequality [2]) Let d= 2,3 and I' be a d — 1-dimensional, closed, regular C*'-manifold
embedded in R*, k € N. Moreover, let Y : I — rg(I') C R* be a homeomorphism with DY, (DY) ' e L™.
Then, if X denotes the position vector of the integration variable, the following inequality holds:

/vs?-vs(?_)?) > |Y(I)| - |T.
r

The proof of the above lemma is rather technical and can be found in [2].

3. Matrix formulation

We now turn our attention to an equivalent matrix formulation to the fully discrete problem (2.1)—(2.4).
Given the matrix entries

= = = d
M;; = <¢ia ¢j>v My :=Myld, N;:= <¢ia ¢jvk>k:17 (3.1)
A,‘j = <v5¢ia VS¢/>7 2[} = A,jla, (32)
with /d € R?*? being the identity matrix and (é'k)le the canonical basis of R?, the mass and stiffness matrices are

M := (M) M = (M) N = (Ny); (33)

ij=1"

I
ij=1°

A= (4;)! A= (4;)! (3.4)

ij=1° ij)ij=1"

We point out that M, 4 and N possess matrix-valued entries and therefore the matrix—vector product is
understood in the following sense:
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7 I
- (sn)
J=1 i=1
each component Vv, of 17, as well as each of M 17, is itself a vector in RY.

We use the convention that a vector of nodal values of a finite element function is written in bold face:
V=), eV:=Risequivalentto V = Y. V,, € 7" (I'). We introduce the subspace Z(I') of 7" (I') of
functions with mean value zero, and the corresponding subspace X of V of vectors V satisfying V- M1 =0
with 1:= (1)._,. We then note that

1
V=> Vg, eZ(I) <« V=()_ X (3.5)
=1
We are now in a position to write the matrix formulation of (2.1)—(2.4)._'Up0n expanding the unknown

scalar functions ¥ € Z(I'),x € 7°(I') and vector functions ¥ € ¥ (I'),® € Z(I') in terms of the basis func-
tions and setting ¢ = ¢; and $ = ¢é;, we easily arrive at

(2.1) ~> tdV + MK = —4X, (3.6)
22) - MK-N'EK=0, (3.7)
(23) ~» —AK+MV =E, (3.8)
(24) ~» MV —-NV =0, (3.9)

where E = ( (Vsqby Vs§>),1-:1. This system can be written equivalently in block-matrix form as follows: find
VeV, KeV, KeX, VeX such that

A 0 M 0 1%
0 -4 0 M||K
M 0 0 -N
0 M -N 0LV

(3.10)

=

A4
E
0
0

We discuss the solvability of (3.10) and propose an algorithm for its solution in Section 4. We point out that
the mesh 7 can be suitably graded and the polynomial degree k > 1 is arbitrary, even though we restrict
ourselves to piecewise linears in the simulations of Section 5. This flexibility is quite important to handle
complicated geometries and possible pinch-off singularitics. We also stress that A, M need not be formed
and stored in practice since they can be easily obtained from A, M.

4. Schur complement approach

Consider the following generic vector equation with a (possibly singular) square block A:

e olle)-le
c pllo] |G
Let A be symmetric with (nontrivial) kernel ker(A4). Then the range Y of 4 is the orthogonal complement of

ker(A). Let S : Y — Y be the inverse of 4 restricted to Y: SA = AS = Id on Y. If P denotes the orthogonal
projection onto ker(A4), we have
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SAV =V —PV =(ld—P)V YVeR =V, (4.1)
where Id — P is the orthogonal projection onto Y. The Schur complement equation for Q then reads
(-CSB+D)Q+ CPU = G — CSF. (4.2)

Solvability of this system depends on the structure of the two terms on the left-hand side of (4.2). We intend
to apply this splitting to (3.10), which involves dealing with the upper left block containing A and 4 on the
diagonal.

Since the kernel Z of A4 in (3.4) is the one-dimensional subspace of V = R’ spanned by 1 = (l)le, then
the range Y = Z* of A4 is the orthogonal complement of Z with respect to the standard Euclidean inner
product in R’. If X denotes the space defined in (3.5), X and Y are related as follows:

VeX << MVeY. (4.3)

LetS: Y — Y be the inverse of A restricted to Y, and let P : V — Z be the orthogonal projection into Z,
thereby satisfying (4.1) with

1 ®1
PV——1TV1_—V VYV e V. (4.4)
1M1 1
We now would like to apply (4.2) to (3.10) with vectors U = [V K]" and Q = [_' ] Let us assume
momentarily that there exists a solution [V K, K, V] to (3.10). Then from (4.2) V, K, K, V satisfy
‘s N\ [K]  [-1MS4X + iBV @5)
N “MSM |V MPK — MSE ' '

We observe that both SAX and SE make sense because AX € YV and E = ((Vs¢,, Vse))_, € V; this
could be viewed as a compatibility condition. Multiplying (3.6) and (3.8) by Tand 1, respectively, we see
that both components of Q satisfy K € X and V € X or, in view of (4.3),

MK eY, MVeY. (4.6)

Since the upper left block of (4.5), M. SM : X — MY, is nonsingular with inverse M Vi , we can apply
(4.2) again to arrive at

(TNTM"ZM”N + MSM) V+ MPK = —N' i1 '4X + MSE. (4.7)
To decouple (4.7) we first eliminate the term M PK which acts like a Lagrange multiplier to the constraint
V € X. We achieve this by the orthogonal projection IT onto X:
M1 e M1
m=1d— -2 (4.8)
M1 - M1

Since MPK € span{M1} = X*, upon multiplying (4.7) by IT we obtain the final form of the Schur com-
plement, namely the reduced equation

(N6 AM N + MsM)v = 11(-N"# X + MSE), (4.9)

because IV = V. This reasoning leads to the following solvability result.

Theorem 4.1. (Solvability) There exists a unique solution [I7,K K, V]T of system (3.10), the components of
which can be obtained by sequentially solving the following (uniquely solvable) systems:

Vex: H(TNTM"ZM”N +MSM)HV — IIF, (4.10)
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VeV: MV=NV, (4.11)
KeV: MK=—-iX -1V, (4.12)
KeV: MK=N'EK, (4.13)

where F = —]VTA_/'IJZX + MSE.

Proof. By the argument preceding the statement of the theorem we conclude that if [17, K. K, V]T is a solu-
tion to (3.10) then V, K, K, V are solutions to (4.10)—(4.13), respectively.

The reciprocal part of the proof consists of proving that systems (4.10)—(4.13) have unique solutions and
they constitute a solution of (3.10).

Let us first check the solvability of systems (4.10)-(4.13). It is easy to verify that the operator
HOMSMIIT : X — X is symmetric and positive definite, and on' i AT NI X = X s symmetric and
positive semi-definite. Therefore, the matrix ensuing from (4.10) is positive definite and since the right-hand
side of the equation belongs to X, this symmetric system has a unique solution ¥V € X. Systems (4.11)—
(4.13) involve mass matrices, which are positive definite in V = R/, existence and uniqueness are thus
ensured.

Let us now verify that the solutions to (4.10)—(4.13) constitute a solution to (3.10). Since ITV = V, by
(4.10) and (4.11) we have that

IN' WAV + IMSMV = H(fﬁTM‘l,Zf( n MSE) :

or

1vsmV = 11(-N"#"' (4% + <dV) + MSE).
Hence (4.12) implies I[IMSMV = H(]VTI? + MSE), and (4.13) yields
IIMSMV = IIM (K + SE).
Since I1 is the projection onto X, MSMV — M(K + SE) € X* = span{M1}, we infer that

M (MSMV — M(K + SE)) = SMV — (K + SE) € Y* = span{1}.
Therefore, since Y = ker(4),

ASMV — (K + SE)) =MV — AK — E =0,

which coincides with the second equation in (3.10). The rest of the equations in (3.10) are immediately de-
duced from (4.11)—(4.13). O

The method actually implemented in ALBERT consists of first solving for ¥ using (4.10), next solving
(4.11) for V and finally updating X via X + V.

5. Implementation and simulations
In this section we describe the implementation of (2.1)—(2.4) together with several enhancements. The

latter are mesh regularization, space-time adaptivity and control of element angles. They are motivated
through examples showing the necessity of tackling such issues, and the beneficial effect of our approach
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to solving them. Throughout this section, we take ¢ = 0 in the simulations, because for the time being we are
mainly interested in the effect of plain surface diffusion. Computations with given ¢, as well as the coupling
with elasticity in the bulk Q, will be the subject of future work.

5.1. Implementation

The implementation was performed within the finite element toolbox ALBERT [22,23], after adding suit-
able data structures to handle surfaces in R* and curves in R*. The basic algorithm consists of the following
steps:

Algorithm 5.1. (Basic algorithm)

Take a mesh representing the initial surface

Choose a timestep

Build the matrices A, M and N (Z, and M are not really necessary)
Solve (4.10) and (4.11)

Update X—X+17V.

Go to step 3.

o O 0 H

Notice that the matrices need to be re-built in each timestep because they depend on the current surface.
In step 4 we solve the following linear systems:

ST - —1

M AX,

Vex: H(rﬁTM"A?M"lz\? +MSM>HV =11
VeR : MV=NV.

We solve both of them by a conjugate gradient (CG) method. Solving the second one is trivial since we only
have to invert a mass matrix which has bounded condition number. To solve the first one, in each iteration of
CG we. 1712]11/)6_» to_compute a matrix—vector product for the matrix ensuing from this system, namely
II(tN' M AM N + MSM)II, where the matrix S is the inverse of A restricted to ker(4)". We do not com-
pute this inverse explicitly, but we solve a system of the form A¢ = b using another CG iteration (inner loop).
Since A4 is a discretization of a Laplace operator, we use a hierarchical basis preconditioner which greatly im-
proves the performance of the inner loop. The design and study of effective preconditioners for the full system
is still open and we leave it for a forthcoming article. This issue is crucial to speed up the computations.

As a first example we show in Fig. 3 the evolution of a unit cube toward a ball with the same volume. As
can be seen in Fig. 3 the geometric flow by surface diffusion is not as gentle as the corresponding mean cur-
vature flow [15], and leads to severe mesh distortions. Even if our formulation of Section 2 allows corners
and edges, which are rather singular for surface diffusion, they give rise to fast node motion and mesh dis-
tortion. This is illustrated by the creation of ears during the evolution of the same cube when represented

Fig. 3. Evolution of a unit cube by surface diffusion. All the surfaces are represented by 768 triangles and 386 vertices. The (uniform)
timestep used in the computations is 7 = 1 x 107%.
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=0 r=2x10"* t=4x10"* tr=8x10*% t=16x 1074

Fig. 4. Pathological ear formation in the evolution of a unit cube by surface diffusion. All the surfaces are represented by 3072 triangles
and 1538 vertices. Ear formation is the fatal manifestation of mesh distortion and is caused by clustering of nodes, crossing of element
sides and folding, and is due to an inadequate tangential motion. It is cured with mesh regularization and timestep control. The
(uniform) timestep = = 1 x 10~* used in the computations is too large for the underlying mesh.

r=0 r=1x100% r=2x100*% =3x10* r=4x10"*

Fig. 5. Steps toward the pathological formation of ears. Zoom into a vertex of the initial cube. After six timesteps some triangles
collapse into points and others into segments, thereby making the mesh degenerate and producing numerical artifacts. The surfaces are
represented by 3072 triangles and 1538 vertices. The (uniform) timestep 7 =1 x 10~ used in the computations is too large for the
underlying mesh resolution.

with a finer mesh; see Figs. 4 and 5. This is clearly a numerical artifact and cannot be cured by mesh refine-
ment and/or coarsening.

There are two reasons that contribute to mesh distortion: clustering of nodes in regions of high velocity
(along with crossing of elements sides and folding) and large timesteps. The first issue is due to the absence,
in our formulation of Section 2, of a geometric law for tangential flow to maintain mesh quality; the cure is
thus mesh regularization and is discussed in Section 5.2. On the other hand, large timesteps yield changes of
nodal positions tangential to the surface which may exceed the local meshsize and also lead to mesh distor-
tion; a cure is timestep control and is discussed in Section 5.3.

5.2. Mesh regularization

Mesh regularization is a procedure to maintain mesh quality, namely to keep all angles on element stars
approximately of the same size; a star o, is the support of a basis function corresponding to node z. It is
known that good approximability of the surface and the PDE on it hinges on avoiding mesh distortion.
Mesh regularization is thus a redistribution of nodes on the surface, which entails a tangential flow and
does not affect the normal motion.

Since surface diffusion is a geometric evolution that preserves the volume of the bulk Q(¢7) enclosed by I'(¢),
we present a volume preserving mesh regularization algorithm which consists of a Gauss-Seidel type iteration:

Algorithm 5.2. (Regularization sweep) For each node z of the mesh do the following:

1. Compute a normal vV, to the node z.

2. Compute aweighted averageZ of all the vertices that belong to the star centered
at z.

3. Consider the 1line that passes throughz in the direction of the normal V,. Replace
the node z by the only point belonging to this 1line that keeps unchanged the vol-
ume of the bulk.
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bulk

midpoint of
the element l
~

N ~
vertex to~ A7 —new vertex %
update z :

midpoint of
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direction of normal 7,

Fig. 6. Volume preserving mesh regularization in 2d. The area of the shaded triangle coincides with that of the triangle marked with
thick lines. Then the area of the whole bulk remains unchanged.

We now describe each step of this procedure in detail. In the first step, we take the normal to the node to
be the weighted average of the normals of the elements sharing that node. The weight is given by the size |7]
of the element over the size of the star. That is, for each node z, the normal v, is defined by

=y 2

TeT
TeT,

where 7, denotes the set of all the elements of the mesh that contain z, and thus form the star w_, and V7 is
the outer normal of the element 7.
In the second step, we take zZ to be the average of the barycenters of all the elements in the star w.:

S 1 Zl lzT
AP

TeT,

where z. denotes the ith node of the element 7. The result thus coincides with a weighted average of all the
nodes in ..

The implementation of the third step depends on the dimension. In 2d the situation is simple. Given
that the bulk is the interior of a closed polygonal curve (mesh), consider a node z and its two adjacent
nodes as depicted in Fig. 6. The direction V, turns out to be perpendicular to the segment joining the adja-
cent nodes. The idea is then to compute the new vertex z = 7 + ¢v., that will replace z, in such a way that
the area of the triangles with vertices z (triangle with thick lines) and z (shaded triangle) is the same (see
Fig. 6).

To perform the third step in 3d we first observe the fact that, given a fixed point z, the volume of the
enclosed region is proportional to the sum of element contributions V7 defined as follows:

Vi=(zh—2) x (&2 —7) - (2) — 2),

where z;,, i = 1,2, 3 denotes the vertices of the (surface) element 7 following a positive orientation with re-
spect to the outer normal. The idea is now to compute the new vertex 7 = Z + ¢V., that will replace z, in such
a way that the contribution to the volume of the modified star is the same as that of the original star. We
take z := z in the definition of ¥ above, and number the vertices of each element in such a way that z = z}.
Then the volume contributions of the old and the new star will be equal if

e x(m-2-(-2)=> (F-2)x(z -2 (-2

TeT, TeT
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Fig. 11. Detailed view of the pinch-off for the 8 x 1 x 1 prism. The control of wide angles, coupled with mesh regularization, refinement
and coarsening cure mesh distortion until the very moment of pinch-off, when the elements are rather elongated but not degenerate. An
angle is considered to be wide when bigger than 120°.

Algorithm 5.5. (Angle width control)

1. Mark all the elements having at least one angle bigger than ty,«-
2. If there are elements marked,

(a) Halve (one bisection) all the marked elements.

(b) Perform nyg regularization sweeps.

(c) Go to 1.
5. If there are no elements marked, continue.

Here, omax, nmr are fixed parameters. The element halving is done following the newest-vertex bisection
rule, which keeps the number of elements in a star uniformly bounded, but may not necessarily split the
widest angle. The subsequent mesh regularization takes care of this issue. It is important to point out that
only one bisection is done to the elements at this stage: two bisections would lead to elements having the
same angles as the original! Fig. 11 shows a detailed view of the evolution of the § X 1 X 1 prism when
approaching the pinch-off. The control of wide angles, coupled with mesh regularization, refinement and
coarsening produce very good meshes, even very close to the pinch-off.

5.6. Full adaptive algorithm

We start this section by describing the final version of our adaptive algorithm for surface diffusion.

Algorithm 5.6. (Final version of surface diffusion)

1. Start with an initial mesh, and let X be the vector of coordinates.Let T be the
initial timestep.

2. Set the values for the following parameters:

Mesh regularization: mpy € Z,y (number of sweeps)

Timestep control: O <7Tpin < Tmax, € >0

Space adaptivity:e, >0, 0<79.<ygr<1 Control of angles width: 60° < oy, < 180°.

Perform nyg regularization sweeps (Algorithm 5.2).

. Run the mesh adaptation routine (Algorithm 5.4).

If d=3, run the routine for controlling wide angles (Algorithm 5.5).

. Solve (4.10) for Vand (4.11) for V.

. Apply timestep control and update X (Algorithm 5. 3).

. Go to 3.

@ 2 O O N
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Mesh regularization: nyg = 2 (number of sweeps).

Timestep control: ¢, = 0.1 (tolerance), Tmin = 1 x 1077 (minimum timestep), Tmax = 5 X 107> (maximum
timestep).

Space adaptivity: ¢, = 0.1 (tolerance), yg = 0.7 (refinement threshold), yc = 0.3 (coarsening threshold).
Control of angles width: a,,x = 120° (widest angle allowed).

Fig. 13 shows volume and surface area vs. time. Volume change is minimal (less than 1.3%), and thus
consistent with (2.5). Surface areas are always decreasing with ¢ as predicted by (2.6).

Fig. 14 provides information about the behavior of the timesteps due to the timestep control routine:
it shows histograms with the number of timesteps used in every tenth of the whole time interval. In all
the experiments, and due to the sharp sides of the initial prisms, which imply a fast motion of points,

— Cube

--- 16 x 1 x 1-Prism

--- 8x1x1-Prism
4 x1x1-Prism

1.012 .................. N 0.95
1.01 ] 0.9

e 0.85F "

e 0.8

4 x 1 x 1-Prism 0.75 o
- 8x1x1-Prism |
Cube | 0.7 e ]
[ e 1Bx4xA-Prism || ey
. 0.65
0 9980 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Volume Area

Fig. 13. Relative volume and surface area with respect to the initial values vs. normalized time (#/Tg,,). The computations were
performed with the full adaptive algorithm (Algorithm 5.6).

150 | Z 4 x 1 x 1-Prism
8§ 8 x 1 X 1-Prism
Bl 16 x 1 x 1-Prism

100 [

50

0

Fig. 14. Timestep control: Number of timesteps used in each tenth of the whole time interval of computation. In all the experiments,
and due to the sharp sides of the initial prisms, the timestep size was 7,,;,, at the beginning. For the cases where singularities occur
(8x1x1and16x1x1 prism) the timesteps are again very small at the end due to the infinite velocity of the points of the surface close
to the pinch-off.
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Fig. 16. Bubble formation during the evolution of a curve by surface diffusion. Solution obtained every 60 adaptive timestesps. The
curve defines initially an almost slit domain, next develops a mushroom shape before self-intersecting and crossing, and finally opens
up. It is important to observe the very disparate time scales of this evolution. This purely geometric motion might be a mechanism for

the creation of inclusions (or islands).

t=0 t=0.01965 t=0.05017 t=0.07517

ok

Fig. 17. Evolution of the rose given in polar coordinates by r(f) = sin(20). The stable asymptotic limit is a circle on which the curve
winds three times. The qualitative agreement with the results presented in [19] is excellent.

6. Conclusions

We have devised and implemented a new FEM for the purely geometric motion of parametric surfaces
(or curves) by surface diffusion. The scheme hinges on

an operator splitting into second- and zero-order equations;
dealing with both continuous scalar and vector velocities and curvatures, which relate weakly with the
discontinuous unit normals;

e a semi-implicit time discretization, which leads to linear PDE to be solved at each time step, allows for
relatively large time steps, and requires no explicit parametrization of the surface;
an effective Schur complement approach for the solution of the ensuing linear systems;
mesh smoothing to avoid mesh distortions, as well as space adaptivity and timestep control to optimize
the computational effort.
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We documented the performance of the new FEM with an extensive list of simulations, some exhibiting
pinch-off, crossing, and mushroom formation in finite time. The algorithm is well suited for the study of
surface diffusion as well as the coupling of it with other physical processes such as elasticity. In the present
paper, we restricted ourselves to considering closed surfaces or natural boundary conditions. The flexibility
of finite elements, however, allows for other boundary conditions via slight changes in the implementation.
Animations of the computational results presented above can be found in http://www.math.umd.edu/~rhn/
SurfDiff/Movies.

We mention [3,4] which uses the 2d version of our scheme for island dynamics with adatom diffusion and
adsorption—desorption, where the dynamics of the island boundaries is governed by a two-sided flux to-
gether with surface diffusion.
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